
Shielding Induced Safe Reinforcement Learning For Drone Navigation

Daniel Bramblett, Vivek Sahukar
Group #1

School of Computing and Augmented Intelligence
Arizona State University, AZ, USA

{drbrambl,vsahukar}@asu.edu

Introduction
Autonomous drones have been an active area of research,
with work including safely learning how to traverse in real-
world environments. One use case for these types of drones
is agriculture, where they are increasingly used to improve
farm operations’ efficiency and yield, such as surveillance,
crop health monitoring, and pesticide treatment. In general,
drone users require the ability to either safely train a drone
on their specific task or have some guarantees of safety.

Drone navigation needs to fly agile and autonomously to
complete its tasks in all environments. Unsafe behavior can
cost the drone while also putting other people and agents
who share that environment at risk. This makes reinforce-
ment learning challenging since unsafe behavior has to be
performed to learn that it is unsafe.

This paper examines using shielding on reinforcement
learning agents for faster and safer drone navigation train-
ing. We evaluate constructing shields for learning obstacle
avoidance in continuous state and action spaces. We explore
three shield construction approaches for shielding agents in
a continuous state and action space.

Related Work
A framework, ”FoRShield”, was proposed by (Potok 2018)
for ensuring safety in reinforcement learning (RL) systems
with a particular application to drones for fire-fighting. FoR-
Shield employs Actor-Critic RL algorithms and reachability
analysis to create a protective ”shield” that filters out un-
safe actions during training and operation. The shield dy-
namically evaluates actions based on safety and efficiency,
adapting to different environmental conditions. The paper
(Ugurlu, Pham, and Kayacan 2022) introduces a novel deep
reinforcement learning (DRL) framework tailored for au-
tonomous aerial robots navigating in dense environments.
The authors employed a forward-facing depth camera to en-
able the DRL agent to identify and navigate around obsta-
cles within a rough global path. The framework focused on
ensuring safety during end-to-end path planning by embed-
ding safety boundaries during training, designed to prevent
the agent from encountering hazardous situations. (Hodge,
Hawkins, and Alexander 2021) discusses safety assurance

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for the drone navigation system that uses deep RL to guide
drones based on sensor data. Firstly, the authors conduct
functional failure analysis (FFA) to identify all possible sys-
tem function failures that could lead to hazardous situations,
such as collisions. This helps define specific safety require-
ments the system must meet. Then, the paper discusses the
three assurances, viz. training, learned model, and overall
drone performance, to generate confidence that the naviga-
tion system will not lead to harmful outcomes.

Our research is based on work by Alshiekh et al. (2018) on
converting LTL safety specifications into a shield for train-
ing an RL agent. We also evaluate safety performance during
training. The main difference is that we are working with a
continuous state and action space, meaning that it is impos-
sible to derive the agent’s safe region for the active shield.

Technical Approach
Overall Technical Approach
The problem we are solving is reducing the time and safety
risks associated with training an autonomous drone to navi-
gate an environment safely. To do this, we found an existing
drone environment and modified it to create a source of risk
the drone must learn to avoid. We then implemented three
shield variations and evaluated the safety and efficiency of
training agents with each.

Environment We used the Ingenuity environment based
in Isaac Gym (Makoviychuk et al. 2021) for our project.
Isaac Gym was created to perform parallel end-to-end GPU
training, resulting in faster training and rendering. These
benefits come at the cost of increased difficulty in creating
and/or modifying environments because each piece of the
code must work with all parallel instances simultaneously.
Also, Gym manages the objects making it not trivial to fig-
ure out how forces are being applied.

The Ingenuity environment is based on NASA’s Ingenuity
helicopter, which has 6 degrees of freedom actions for the
force vectors of the lower and upper rotors. A target location
is randomly generated between [-5,5] on the x and y axis and
[1,2] on the z. Using its orientation and relative distance to
the target, the helicopter must traverse to the target.

A dense reward function is provided that gives a positive
reward based on how close the helicopter is to the target,
how upright it is, and how little it is spinning. These rewards



help the helicopter learn to remain upright, not spin out of
control, and try to get closer to the target. The rewards re-
ceived each timestep is bounded between (0, 7].

We introduced an obstacle into the environment at a fixed
location (0.5, 0.5, 0.5). If the agent hits the obstacle, it is
penalized with a -10,000 reward. The agent’s cumulative re-
ward is negative if the policy is unsafe.

The environment’s observations were also modified to in-
clude the drone’s relative location to the obstacle. Otherwise,
the obstacle would be invisible to the agent, making it im-
possible to train to avoid it.

Shield Implementations To construct the shield, we de-
cided to make the shield satisfaction condition “the agent
must always be 0.6 or greater away from the obstacle”.
While this seems arbitrary, such a format allows the user’s
preferences to be used as a shield to allow the reinforcement
learning agent to learn how to maximize its rewards while
remaining compliant.

In the case the safety condition is not satisfied, there are
two ways the shield can interact: give feedback to the agent
through its reward function and replace the action with a
safer action. For the feedback, we remove the positive re-
ward received by the agent. Due to the agent learning to
maximize its rewards, it must learn how to satisfy the shield.
Also, by not punishing the agent with a negative reward, we
can still differentiate whether the agent’s behavior is safe or
not using just the expected value.

To find a safe action, we used the locations of the ob-
stacle and agent to calculate the quickest direction to move
the agent away from the obstacle. Using the agent’s loca-
tion {xa, ya, za} and the obstacle’s location {xo, yo, zo}, the
direction vector that moves the agent the quickest away is
−→
d = {xa − xo, ya − yo, za − zo}. The unsafe action is re-
placed with an action equivalent to pushing the agent with a
certain force using −→

d .
Using the feedback and safe action replacement ap-

proaches, we propose three different shields:

1. Hard Shield: Replaces the action with the safe action.

2. Soft Shield: Gives feedback to the agent.

3. Hybrid Shield: Both replace the action with the safe ac-
tion and give feedback to the agent.

Tasks Conducted by Each Team Member

We used pair programming when modifying the Ingenuity
environment and writing the shield variations. Beyond that,
here are the individual tasks we each performed:

Daniel Bramblett: Explored other drone environment op-
tions, including implementing the same task of avoiding the
obstacle in the OpenAI environment gym-pybullet-drones
(Panerati et al. 2021). He also constructed the algorithm for
selecting the safe action.

Vivek Sahukar: Set up and modified Isaac Gym and ran
the experiments. Additionally, researched existing work on
safe AI with regards to drones.

Results and Observations
We evaluated the safety and convergence when Advantage
Actor-Critic (A2C) trained an agent on this task for each
shield for the same ten seeds. We evaluated the average and
standard deviation of the rewards for the first 10,000 steps.
We trained without a shield to use as a baseline. The results
are shown in Figure 1.

The main results are that the shield performed worse than
the no-shield baseline. All experiments performed similarly
badly in the first steps with an extremely high negative re-
ward. However, it took the baseline only 16 steps to start
receiving a positive reward, while it took 175 to 262 steps
for the shield approaches. Then, the baseline learned faster
by reaching 6 thousand rewards seven to ten times quicker
than the hard or soft shield. Furthermore, the hybrid shield
caused the agent to fail to learn 20% of the time. However,
the soft shield was more stable than the baseline.

Observing the agents running, we noticed that the no-
shield baseline causes the agent to go higher up than the
shielding approaches to avoid the obstacles. Implying that it
learned quickly to avoid the area around the obstacle.

A key observation explaining these results is that the ini-
tial step of all these approaches results in the same nega-
tive reward for each seed. We examined whether the drone
is starting in the obstacle’s crashing range and found that,
while this does reduce the negative reward slightly, it does
not prevent the hard shield from becoming negative, imply-
ing this is only part of the problem.

One hypothesis we could not test is that Isaac Gym ap-
plies forces based on the object’s orientation. This means
we must adjust our safe actions to apply force in the desired
direction based on the orientation. This seems to be the case
when examining the hard shield run video where the drone
maintains an orientation of facing away from the obstacle.
Learning to maintain this orientation explains why the hard
and hybrid shields trained slower.

The soft shield also trained slower because we removed
the rewards, reducing the information the agent needed to
learn. For example, if the target was close to the obstacle,
the agent might not receive a higher positive reward if it went
closer to the target, resulting in it learning slower.

We reran these results multiple times to verify they are
repeatable and are not a coding bug.

Safety Dimensions Addressed
Using shielding for safe reinforcement learning prevents
side effects and helps the agent learn how to complete its ob-
jective using safe behavior. Furthermore, shielding protects
the agent and environment against unsafe computed behav-
ior by replacing unsafe actions. As such, our work addresses
two main safety dimensions: AI Objective vs AI Behavior
and Computed Behavior vs Real Outcome.

In the case the shield is derived from the user’s prefer-
ences, Intent vs Specification and Intent vs Outcome are
also addressed since the shield is being used to help the user
convey their intent on what the agent should not do while
completing its objective.



Figure 1: Empirical results of the rewards of training each agent using reinforcement learning with different shield variations.
The top left graph is the baseline when the agent learned without a shield.

Conclusions
For this project, we examined using shielding for safe rein-
forcement learning training in drone navigation. We imple-
mented three shields for training an A2C agent in a modified
Ingenuity environment. We found that adding a shield isn’t
trivial, resulting in the shield approaches performing worse.
The hard shield made it more challenging for the agent, and
the soft shield prevented the agent from learning.

Based on the poor performance of the current safe action
and feedback, we want to explore different safe action and
feedback approaches and see how they affect the training
performance.

Due to not having direct access to the physics engine,
another area of research would be exploring how to apply
shielding to a black box agent. We have considered two ap-
proaches. First, use an environment-level shield during train-
ing, reset the environment, or give the agent direct feedback
on the outcome. However, this approach cannot be active
outside of training. The second approach would be to learn
the underlying model through training.

Another major direction for future work is exploring cre-
ating shields that can automatically handle more dynamic
environments. For example, if we add horizontal wind or
create different obstacles and targets, the shield should auto-
matically guarantee some degree of safety.

An interesting question we also want to examine is how to
extend shielding into partial-observable environments. This
would require querying the current belief state and deter-
mining the confidence needed to decide whether an action
satisfies a safety requirement. Then, the question is how to
figure out safe actions.

The objective of the current environment implementa-
tion is to avoid obstacles while reaching the target location,

which allows for constructing a clear region that the drone
should avoid. This is why a hard shield is even possible
for this problem, or the baseline can quickly find a strat-
egy around the obstacle. For example, if the target location
is in close proximity to the obstacle, the agent cannot avoid
the obstacle. This would require a soft shield or a hard shield
that is precise enough to allow for these proximity cases. We
are planning to explore solving such problems.

We discussed how to handle learning the shield similar
to how the paper by Alshiekh et al. (2018) learned the safe
region. Automatically learning this for continuous, partially
observable would give a user-friendly shield. This could be
expressed as solving a three-agent environment containing
an agent, environment, and the shield. The agent’s and envi-
ronment’s objective is to reach a state that does not satisfy
the safety requirements. The shield’s objective is to prevent
this while minimizing the interference. Using a heuristic to
approximate the closeness to the threshold of passing/failing
a safety requirement, we think it might be possible to solve
this problem creating something similar to a safe region.

Another question worth exploring is creating a shield
to handle multiple risks. For example, extending the cur-
rent shield for preventing the drone from crashing into the
ground. We started examining this question by putting a high
negative reward for that case, resulting in the drone failing to
learn due to always receiving a negative reward. There is an
active area of research on merging multiple shields in such
cases, which, in our case, would require finding a safe action
that satisfies each shield. The main challenge is figuring out
how to perform this search in a continuous space.

The GitHub repository containing the modified
code files and steps for running it can be found at
https://github.com/viveksahukar/ai-safety-drone.



References
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe reinforcement learn-
ing via shielding. In Proceedings of the AAAI conference on
artificial intelligence, volume 32.
Hodge, V. J.; Hawkins, R.; and Alexander, R. 2021. Deep re-
inforcement learning for drone navigation using sensor data.
Neural Computing and Applications, 33(6): 2015–2033.
Makoviychuk, V.; Wawrzyniak, L.; Guo, Y.; Lu, M.; Storey,
K.; Macklin, M.; Hoeller, D.; Rudin, N.; Allshire, A.;
Handa, A.; et al. 2021. Isaac gym: High performance gpu-
based physics simulation for robot learning. arXiv preprint
arXiv:2108.10470.
Panerati, J.; Zheng, H.; Zhou, S.; Xu, J.; Prorok, A.; and
Schoellig, A. P. 2021. Learning to Fly—a Gym Environ-
ment with PyBullet Physics for Reinforcement Learning of
Multi-agent Quadcopter Control. In 2021 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 7512–7519.
Potok, M. 2018. Safe reinforcement learning: An overview,
a hybrid systems perspective, and a case study.
Ugurlu, H. I.; Pham, X. H.; and Kayacan, E. 2022. Sim-to-
real deep reinforcement learning for safe end-to-end plan-
ning of aerial robots. Robotics, 11(5): 109.


