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Introduction

For semantic image segmentation, DL methods use pixel-based analysis (i.e. calculating
pixel-wise loss and predictions). On the other hand, OBIA is used in traditional remote sensing
for semantic segmentation, which consists of two steps: segmentation (grouping of pixels into
super-pixels to generate “objects”) and classification (classifying the objects obtained from the
previous steps into different required classes).
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OBIA's segmentation stage involves manual
feature selection and parameter tuning, making it subjective and time-consuming. On the other
hand, DL excels at automatic feature selection and hyperparameter tuning but has limitations in
handling high-resolution imagery & capturing contextual information.
DL integration into OBIA workflow remains limited due to the following:
e challenges in adapting pixel-centric DL segmentation models to object-based

frameworks

more computational complexity and overhead

lack of clear advantages of DL over traditional machine learning techniques in terms of

accuracy (Blaschke, 2010)for OBIA classification
This project aims to bridge this gap by developing a novel framework that effectively
integrates DL into OBIA pipelines for remote sensing image analysis by automating
feature extraction for segmentation, learning object-level features, and improving model
performance metrics.

The relevant literature review reveals some of the latest work on integrating DL with
OBIA. (Zaabar et. al 2022) uses CNN models to extract the heatmaps from the images, which
were later utilized as input features to perform the OBIA. The proposed method still uses the
different scale parameter values obtained through trial-and-error in the OBIA step, which defeats
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the purpose of integrating DL into OBIA to obviate the need for manual parameter selection in
OBIA methods. (Luo et. al 2023) uses SLICO (Zero Parameter Version of Simple Linear lterative
Clustering) segmentation methods to produce superpixel objects from remote-sensing images
with similar shapes and close areas. Then, ViT (Vision Transformer) is used for superpixel
classification. Finally, an object-based K-nearest neighbor filtering algorithm is used as a
post-processing method to reduce the pretzel phenomenon (“prediction of incorrect superpixel
objects leads to many spots in the predicted image”). The main aim of integrating DL methods in
OBIA is to obviate the need for manual hyperparameter selection in the segmentation stage.
However, the user still has to choose the parameters for SLICO (or any other superpixel
algorithm) and object-based K-nearest neighbor algorithms. (Herlawati et. al 2022) uses
DL-based model viz. DeepLabV3+ for semantic segmentation for the land cover classification
task, which does not incorporate features from object-level analysis. Hence, all these methods
still require manual parameter selection for the segmentation algorithm, and the DL models still
work with pixels instead of object-level features. Therefore, there is a need for a hybrid model
that can work with object-level features and incorporate DL into the OBIA workflows.

Methodology

Three binary classification image segmentation datasets from the GeoBench paper were
used. Due to time constraints, the other 3 GeoBench datasets were not included in the analysis
as previously proposed in the project proposal. The details of the datasets used are provided in
Table 1: Dataset Features

Geobench Dataset Image # Train | Val Test | # Resolution
Size Classes (%) (%) | (%) Bands | (m)
m-pv4ger-seg 320x320 2 80 10 10 3 0.1
m-nz-cattle 500x500 2 80 10 10 3 0.1
m-NeonTree 400x400 2 60 20 20 5 0.1

To establish the baseline, the OBIA method was used only for the nz-cattle dataset, for which
mloU was 0.39 and mean Precision was 0.72. The OBIA method did not perform well and took
a lot of time to run, even for smaller datasets. Hence, it was not used in the further analysis.

Fig 2 Contrastive Detection Method
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to ensure that object-level features are learned independently. The pooled features from
different augmentations of the same object are pulled closer in the feature space, enhancing the
model's ability to recognize objects across different views. This mechanism allows the model to
learn powerful, transferable object-level representations without the need for manual annotation,
making it highly efficient and effective for OBIA. DetCon can use different segmentation
methods, such as spatial proximity-based masks, masks generated by the
Felzenszwalb-Huttenlocher algorithm, and human-annotated masks. This highlights DetCon's
flexibility in utilizing both simple and complex segmentation methods to facilitate learning. The
use of such diverse segmentation techniques ensures that the model can adapt to various
levels of segmentation quality, which is crucial for effectively applying OBIA principles in deep
learning contexts. Thus, the DetCon method was chosen to integrate DL with OBIA. By
automating the generation of object-specific masks and focusing on object-level features,
DetCon reduces the reliance on extensive manual annotations and improves the efficiency and
scalability of learning object-centric models in diverse imaging conditions.

Images in each dataset were resized to 512x512 (power of 2), which is more suitable for
downsampling and upsampling images in the model. Imagenet’s mean and standard deviation
were not used for normalization since it did not provide any additional gain in model
performance. Only Red, Blue, and Green channels were used since the GeoBench paper also
used the RGB channels and reported that the additional channels did not provide any extra gain
in model performance. Train/Val/Test split according to the default_partition JSON file
provided by the GeoBench paper. Images were counted in the train/val/test dataloader to make
sure there was no data leakage across the dataset splits. Sample images and labels from the
dataloader were plotted to ensure the dataloaders were working as expected.

The ResNet50 model was chosen as the final model for image segmentation. | also
implemented the UNet with ResNet18 decoder for Lab2 for nz-cattle dataset for Lab 2. So
even though UNet with ResNet architecture would probably be a better model, DetCon
pre-trained weights are available only for ResNet50 and ResNet100. Resnet50 was chosen due
to its lower computational cost, and the image size in the datasets is not big enough to warrant
the use of a more complex Resnet100 model (which could have potentially overfitted).

The ResNet50 model was modified as follows:
1. Removed the fully connected and the average pooling layer.
2. Increased the output resolution by adding additional upsampling layers and hence
redesigned the decoder.
3. Freezing the last few layers did not improve the metrics, so the whole model was trained
but with fewer epochs (=10). After 10 epochs, the model began to overfit.
For Model 1 and 2, respectively, Imagenet and DetCon pre-trained Resnet50 weights were
used, and training was done simultaneously on two different RTX 3090 GPUs. Training and
Validation curves for loss, loU, and Precision were plotted to determine the optimal number of
epochs and check if the loss is converging and the model is not overfitting. After
hyperparameter tuning, the model was trained with these final hyperparameters for each of the
five different seeds: Ir=0.001, batch_size=16, num_epochs=10, and Optimizer=Adam. Then, the
model was run on the final test set to get the Precision and loU. Finally, the mean for the
precision and loU was calculated for 5 seeds with 95% confidence intervals, and a t-test was
performed for statistical significance.



Dice Loss was used instead of the default binary cross entropy since Dice Loss is more
suited for image segmentation tasks. Mean Precision and Intersection over Union (loU) were
performance metrics. Custom functions were written to calculate the Dice Loss, Precision, and
loU. Five different seeds were used, and the mean was calculated for Precision and loU with
95% confidence intervals. A t-test was performed to determine whether the results for the
metrics for model 1 (Imagenet weights) were statistically different from the metrics for model 2
(DetCon weights). i.e., did DetCon pretraining help the model learn and perform better
statistically? The model architecture and hyperparameters were kept the same across the two
models to compare the effectiveness of object-level features learned by the model in the
DetCon pretraining compared to other deep learning models.

Results

Table 2 shows the results for three different GeoBench datasets for binary image segmentation
tasks. The table compares the results for the model trained using Imagenet vs DetCon weights
and reports the mean values for Precision (mPrec) and loU (mloU) over 5 different seeds with
95% confidence intervals mentioned in brackets. The last two columns present the t-test statistic
with p-value in the brackets, to show statistical significance. Model 1 represents the DL only
method and Model 2 represents the DL+OBIA hybrid approach.

Table 2: Mean Precision and loU with statistical significance for GeoBench Datasets

Dataset Imagenet (Model 1) DetCon (Model 2) Precision | loU
mPrec mloU mPrec mloU

nz cattle | 0.80 0.67 0.79 0.68 0.60 -2.89
(0.75,0.85) | (0.66,0.67) | (0.75,0.83) | (0.67,0.68) | (0.57) (0.02)

neon 0.57 0.17 0.61 0.16 -2.21 0.46

tree (0.53,0.60) | (0.14,0.19) | (0.57,0.65) | (0.14,0.19) | (0.06) (0.66)

pvdger | 0.98 0.93 0.99 0.97 -1.81 -2.47
(0.97,0.99) | (0.90,0.97) | (0.98,1.00) | (0.96,0.97) | (0.11) (0.04)

The t-test precision is insignificant for any of the datasets, since the p-values are greater than
the commonly used significance level of 0.05. This suggests that the differences in precision
between the two models (imagenet vs DetCon) are not statistically significant at the 5% level.
However, for the Neon-Tree dataset t-test precision (0.06) is quite close to the threshold,
indicating a marginal case that might be considered significant in a less stringent analysis or
could prompt further investigation. This shows no statistically significant difference in mean
precision if DetCon weights are used compared to the Imagenet weights. Contrary to this, for
the t-test loU, the p-value are much higher than the typical significance level of 0.05 for the two
datasets: nz-cattle and pv4ger. This implies that the DetCon trained model is much better than
Imagenet trained model and proves the hypothesis that the DetCon pretraining helps the model
to learn the object-level features and perform statistically significantly better than the usual DL
models. However, it was surprising that the DetCon pre-trained model did not perform any better



for the Neon-tree dataset for mean loU and only marginally better for mean Precision. One
possible reason for this could be that the loU for Neon-Tree is very low (0.17) compared to the
other two datasets, both for Imagenet and DetCon models, which implies that both the models
fail to learn from the data because the data is indeed more difficult to learn. This is more evident
by analyzing the sample images; neon trees are difficult to segment, but the cows and solar
panels are more easily distinguishable. The image features in the neon-tree dataset are
possibly more distinct from the Imagenet dataset, so even the Deton pretraining did not help the
model to learn object-level features effectively.

Discussion

These results are consistent with the mean loU reported in the GeoBench paper. While the
pv4ger-seg results exceed the GeoBench result (~0.94), the mloU for nz-cattle is less than the
GeoBench result (~0.80) for 3 models but is consistent with other 3 models mloU (~0.68).
However, mloU for neon-tree is much less than the GeoBench result (~0.45-0.55 range). The
difference could be attributed to the difference in the model architecture and hyperparameters
used in the GeoBench paper. It is reiterated that a model other than the one used in GeoBench
was used due to the DetCon pre-trained weights being available for ResNet only. For
DetCon-pretrained weights to be more useful, we need bigger and high-resolution image data. |
would test my hypothesis with much bigger datasets and multi-class labels to see whether
DetCon pre-training helps to learn object-level features from multiple classes of interest.
Moreover, due to time and computational resource constraints, | used the DetCon pre-trained
weights provided by (Hénaff et al. 2021). For future research, | would use domain-specific
unlabeled dataset and do the DetCon pre-training myself, as mentioned by (Hénaff et al. 2021),
so that more object-level features, which are more specific for the downstream tasks, can be
learned. | would then use those DetCon pre-trained weights for supervised learning task on
similar another dataset. Additionally, | would use DetCon pre-trained weights for Resnet50 and
use them for training UNet with the Resnet50 encoder so that analysis can be done, which
would be more comparable with GeoBench results.

Conclusion

The above results show that the DetCon-pretraining helps the model to learn object-level
features and perform better than other deep learning-based segmentation models and OBIA
methods. The model seems to perform better for datasets of images with bigger sizes and
higher resolution. Thus, DetCon pre-training helps integrate DL into OBIA methods and harness
the benefits of both approaches: DL and OBIA. However, further experiments need to be done
with much bigger datasets with multi-class labels to test whether the DetCon pretraining helps
the model learn object-level features and whether this approach can be scaled up across
different datasets and tasks. For future research, | propose to use the datasets from the
agriculture-vision challenge, a multi-class image segmentation task for satellite images of
agricultural fields. | would use their unlabeled dataset for DetCon pre-training and then fine-tune
those weights for the other labeled dataset for the supervised learning task. | would also include
bands apart from RGB to see if the DetCon pre-training can extract additional object-level
features from the extra bands.


https://www.agriculture-vision.com/agriculture-vision-2024/prize-challenge-2024
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Appendices

The code files for replicating the result can be accessed at this GitHub Repository:
https://github.com/viveksahukar/obia-dl

Sample Image and Label from Training Dataloader for NZ-Cattle GeoBench Dataset
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https://github.com/viveksahukar/obia-dl

Training and Validation Plots for NZ-Cattle GeoBench Dataset (Seed=5)
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Training and Validation Plots for Neon-Tree GeoBench Dataset (Seed=5)
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Training and Validation Plots for pv4ger-seg GeoBench Dataset (Seed=5)
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