Project 2: Hot Spot Analysis
Reflection

This project focused on using big data technologies viz. Spark, Scala, and Hadoop for spatial data
analysis. | did 2 analysis: Hot zone and Hot cell. Hot zone analysis required to calculate the hotness of
the rectangles. Hot cell analysis required to apply spatio-temporal statistics to the given New York
monthly Yellow Taxi Dataset from 2009 to 2012 to identify the statistically significant spatial hot
spots.

Lessons Learned

| learned to use Scala language and used it to write programs and run them using Spark and Hadoop.
| gained a good understanding of the spatial data, how to load it, process it and run queries on the
dataset for the analysis. | also learned to use the NVIDIA Rapids library which | used to load the

same .csv files used in the project. | used the NVIDIA Rapids library since it allows to load the entire
dataframe in the GPU memory and it is very fast compared to the usual Pandas Dataframe. | was
quickly able to see the columns of my datasets and debug my code easily. | also got a nice
introduction to using spatio-temporal statistics by using the Getis-Ord Statistic

Methodology

Hot zone analysis

The range join operation on rectangle and point datasets was already done. | implemented the
ST_Contains functionin HotzoneUtils.scala, that returned the number of points located within
each rectangle.

def ST_Contains(queryRectangle: String, pointString: String): Boolean = {
// Extracting point and rectangle coordinates

val rectangle = queryRectangle.split(",")

val point = pointString.split(",")

val rectangleXl = rectangle(0).toDouble

val rectangleYl = rectangle(1).toDouble

val rectangleX2 = rectangle(2).toDouble

val rectangleY2 = rectangle(3).toDouble

val pointX = point(0).toDouble

val pointY = point(1).toDouble

// Checking if a given point falls inside the rectangle

return pointX >= rectangleXl && pointX <= rectangleX2 && pointY >= rectangleYl &&
pointY <= rectangleY2

}

Then in HotzoneAnalysis.scala file, | counted the number of points in each rectangle and sorted
the result.

// Count the number of points in each rectangle and then sort the result

val resultDf = spark.sql("select rectangle, count(point) as pointCount from joinResult
group by rectangle order by rectangle")

return resultDf

Hot spot analysis

| loaded the NYC taxi trip data into Spark dataframe from the given CSV file. By using the functions in
HotcellUtils.scala , | transformed the data to assign spatial (x, y) and temporal (z) coordinates
to each data point.

// Calculate number of pickups for each cell
val pickupsByCell = spark.sql("""
S E{REC)
X, ¥V, z,
COUNT (%) as pickup_count
FROM pickupInfo
GROUP BY x, vy, z
)
pickupsByCell.createOrReplaceTempView("pickupsByCell")

| wrote the SQL query to calculate the number of pickups for each cell and identified each cell's
spatial neighbors.

// Find the sum of neighbor values (26), excluding the cell itself
val neighborsSum = spark.sql("""
SELECT
a.x as x, a.y as y, a.z as z,
(SUM(b.pickup_count) — a.pickup_count) as neighbor_count
FROM pickupsByCell a, pickupsByCell b
WHERE
b.x BETWEEN a.x — 1 AND a.x + 1 AND
b.y BETWEEN a.y — 1 AND a.y + 1 AND
b.z BETWEEN a.z — 1 AND a.z + 1 AND
(a.x <> b.x OR a.y <> b.y OR a.z <> b.z)
GROUP BY a.x, a.y, a.z, a.pickup_count
)
neighborsSum.createOrReplaceTempView("neighborsSum")

Then, | computed the Getis-Ord statistic according to the given formula for each cell to identify
spatial hotspots. | considered 26 neighbors for each cell and equal weight (=1) for each cell as
mentioned. This involved calculating the global mean and standard deviation of the pickup points and
then applying the Getis-Ord formula. Finally, | returned the top 50 hotspots based on the highest
Getis-Ord scores.

// Calculate global mean and standard deviation and Getis-Ord statistic for each cell
val globalSum = pickupsByCell.agg(sum("pickup_count")).first().getLong(®)

val globalSumSqr = pickupsByCell.agg(sum(pow("pickup_count", 2))).first().getDouble(9)
val meanValue = globalSum.toDouble / numCells

val stdDevValue = math.sqrt((globalSumSqr / numCells) - (meanValue * meanValue))

val getisOrdStats = spark.sqgl(f"""
SELECT
X, YV, Z,
((neighbor_count - (${meanValue} * 26)) / (${stdDevValue} * SQRT((26 * ${numCells?
- 26 x 26) / (${numCells} - 1)))) as getis_ord
FROM neighborsSum
""").orderBy(desc("getis_ord")).1limit(50)

return getisOrdStats

Result & Discussion

There were lot of version mismatch in Java and other libraries so | learned the process of
troubleshooting and debugging. This also highlighted the importance of aligning development
environments and carefully managing file paths, especially in virtualized setups like VirtualBox. The
result outputs using the generated .jar file, gave the required outputs. The use of Spark and Scala
was effective in hangling big data while doing complex spatial-temporal analyses.

