Project 1 - NoSQL

Vivek Sahukar ASURIte ID: 1230067360

Reflection

For this project, | broke the problem in 2 parts: retrieving the data based on geographical
location and calculating the distances between locations. | wrote two functions:
FindBusinessBasedOnCity and FindBusinessBasedOnLocation, which connect with
NoSQL database to retrieve business information based on city search and within a certain
radius of a given location respectively. For distance calculations, | used the algorithm given in
the assignment to write the DistanceFunction, which calculates the distance between two
points on the earth given their latitude and longitude, that helped in filtering the businesses
within the given radius.

FindBusinessBasedOnCity (cityToSearch, savelocationl, collection):
records = collection.all ()
filtered businesses = [record for record in records if record['city']
cityToSearch]
with open (savelLocationl, 'w') as file:
for business in filtered businesses:
name = business.get ('name', ''")
full address = business.get('full addre
city = business.get('city')
state = business.get ('state', ''")
line = f"{name}S${full address}${city}${state}\n"
file.write(line)

print (f"Data saved to {savelLocationl}")

DistanceFunction (lat?2, lon2, latl, lonl):
= 3959
phil math.radians (latl)
phi2 = math.radians (lat2)
delta phi = math.radians(lat2 - latl)

delta lambda = math.radians(lon2 - lonl)

** 2 + math.cos(phil) * math.cos (phi2) *

= 2 * math.atan2 (math.sqrt(a), math.sqgrt(l - a))
= R * c

return d

FindBusinessBasedOnLocation (categoriesToSearch, myLocation,
maxDistance, savelLocation?2, collection):
records = collection.all ()
filtered businesses = []
for record in records:
categories = record.get ('categories', [1])
if any(category in categoriesToSearch for category in categories):
business location = (record.get('latitude', 0),
record.get ('longitude', 0))

distance = DistanceFunction (myLocation[0], myLocation[1l],

business location[0], business location([1l])

if distance <= maxDistance:

filtered businesses.append(record.get ('name', ''))

with open (savelLocation2, 'w') as file:
for business name in filtered businesses:

file.write (business name + '\n')

Lessons Learned

In this project, | learned how to use NoSQL databases especially UnQLite, and how to interact
with them using Python. | got experience with geospatial data processing, particularly how to
search and filter data based on the given geographical constraints and save the final results in a
required format. Moreover, | learned how to debug the code and write a clean code that’s easier
for others to understand and modify for future requirements. | also learned about error handling
and debugging techniques by using the test cases provided.

Output

vs-Assignment+5+NoSQL .ipynb @ = output_city.tkxt X

home > vs > Dropbox (ASU) > asu sem 1 courses > cse511-data-processing-at-scale > project-1 > = output_city.txt

1 penny's Restaurant$1330 S Power Rd, Mesa, AZ 85206%$Mesa$AZ
Bikram Yoga$1940 W 8th St, Ste 111, Mesa, AZ 85202%Mesa$AZ
Southeast Valley Medical Group$1950 S Country Club Dr, Mesa, AZ 85210%$Mesa$AZ
The Seafood Market$1910 S Gilbert Rd, Mesa, AZ 85204$Mesa$AZ
Diamondback Gymnastics$7211 E Southern Avenue, Mesa, AZ 85209%Mesa$AZ
Arizona Exterminating Co.$521 E Broadway Rd, Mesa, AZ 85204%$Mesa$AZ
Spa Pima$2150 S Power Rd, Mesa, AZ 85209$Mesa$AZ

vs-Assignment+5+NoSQL .ipynb @ = output_loc.txt X

home > vs > Dropbox (ASU) > asu sem 1 courses > cse511-data-processing-at-scale > project-1 > = output_loc.txt
1 [The Seafood Market
P.croissants

Result

Data saved to output city.txt

Correct! You FindBusinessByCity function passes these test cases. This
does not cover all possible test edge cases, however, so make sure that
your function covers them before submitting!

Correct! Your FindBusinessBasedOnLocation function passes these test
cases. This does not cover all possible edge cases, so make sure your
function does before submitting.

